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Abstract 

The Murasaki-29 sweet potato, characterized by 

its rich phenolic content and high sugar levels, is 

prone to spoilage due to its high moisture 

content. To address this, Osmotic Dehydration 

(OD) was investigated as a precursor to drying to 

economically extend the shelf life of the sweet 

potato by reducing moisture content while 

preserving nutritional quality. The effect of 

varying sugar concentration, temperature, and 

immersion time on the OD characteristics of 

Murasaki-29, as indicated by the performance 

ratio (Pr) was investigated while Adaptive 

Neuro-Fuzzy Inference System (ANFIS) 

modelling was employed to predict the OD 

process. Experimental results showed that while 

increased sugar concentration improved Pr, 

rising temperature negatively impacted Pr. The 

effect of increased time on OD characteristics 

was not consistent, with initial increment but 

later decrement. Among the tested ANFIS model 

configuration, the 2-trimf-ANFIS model 

achieved the highest accuracy with a correlation 

coefficient value (R) of 0.9904. The model’s 

performance showed that ANFIS is a valuable 

tool in predicting OD processes. This study 

contributed to understanding the Murasaki-29 

sweet potatoes OD processing, provided details 

into process characteristics and modelling, and 

suggested the need for optimization towards 

industrial utilization of the results. 
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Introduction 

The Murasaki-29 sweet potato is a unique 

variety of sweet potato characterized by its dark 

purple skin and white flesh. It is resistant to 

southern root-knot nematode and soil rot, 

making it a robust choice for cultivation in 

various regions (Bonte et al., 2008). Murasaki-

29 sweet potatoes are visually appealing and 

nutritionally rich. It contains higher levels of 
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sugar compared to regular orange-fleshed sweet 

potatoes, which contributes to the creamy texture 

and sweet flavour. Murasaki-29 is also noted for 

its high phenolic content, which has been linked 

to various health benefits, including antioxidant, 

anti-hyperglycemic, and anti-hypertensive 

properties (Chintha et al., 2021). Murasaki-29 

sweet potato can be used in a variety of dishes, 

from traditional baked sweet potatoes to more 

innovative recipes like sweet potato fries, soups, 

and desserts. The high sugar content in 

Murasaki-29 makes it suitable for use in sweet 

dishes and snacks.  However, the high moisture 

content of Murasaki-29 enables deterioration 

and spoilage; therefore, postharvest operation or 

treatment of Murasaki-29 is essential. As a 

precursor to further utilization and processing 

such as drying, Osmotic Dehydration (OD) is a 

postharvest process that can effectively reduce 

the moisture content of sweet potatoes, thereby 

resulting in extended shelf life and suitability for 

various culinary applications. 

OD is a widely utilized technique for preserving 

various agro-forestry produce. OD relies on the 

principles of osmosis and diffusion and the 

process involves immersing the produce into a 

hypertonic solution (Mari et al., 2024). When 

agro-forestry produce are immersed in a 

hypertonic solution, such as a concentrated sugar 

or salt solution, water molecules move from the 

submerged produce (where the water 

concentration is higher) to the hypertonic 

solution (where the water concentration is lower) 

to achieve equilibrium. Simultaneously, solutes 

from the hypertonic solution, such as sugar or 

salt, also diffuse into the agro-forestry produce. 

This method not only reduces the moisture 

content but also enhances the flavour and 

nutritional value of the agro-forestry produce 

concerned (Bashir et al., 2020). However, the 

rate of water loss and solute gain during OD 

depends on several factors, including the 

concentration and type of osmotic agent, 

temperature, immersion time, and the ratio of 

food to solution, amongst others (Yadav et al., 

2024).  

OD offers several advantages over traditional 

drying methods (Mari et al., 2024). Firstly, it 

helps in retaining the nutritional and sensory 

qualities of the food. Since the process does not 

occur at extremely high temperatures, there is 

minimal thermal degradation of heat-sensitive 

nutrients and bioactive compounds (Bashir et al., 

2020). Additionally, the infusion of solutes such 

as sugars and salts can enhance the flavour and 

texture of the dehydrated product. More also, 

OD reduces the energy requirements for 

subsequent drying processes (Yadav et al., 

2024). Through the removal of a significant 

amount of water by osmosis, the load on 

conventional drying methods, such as hot air 

drying or freeze-drying, is reduced, leading to 

energy savings (Mari et al., 2024). This makes 

OD an energy-efficient and cost-effective 

method for food preservation. 

The choice of osmotic agent and process 

parameters significantly influences the 

efficiency of OD process (Bashir et al., 2020). 

Common osmotic agents include sucrose, 

glucose, and sodium chloride (NaCl). Each of 

the osmotic agents is effective, however a 
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synergistic effect can be realised if they are 

combined to form a hypertonic solution. 

Temperature is another critical factor. Higher 

temperatures generally increase the rate of water 

loss and solute gain due to enhanced molecular 

mobility (Yadav et al., 2024). However, 

excessively high temperatures can lead to 

undesirable changes in texture and colour. 

Therefore, prediction and thus optimization of 

OD characteristics are crucial for achieving the 

desired quality in dehydrated agro-forestry 

produces. 

Models are essential for representation, 

understanding, prediction and optimization of 

the mass transfer dynamics during OD. The 

Peleg model is one of the empirical or semi-

empirical models that is commonly used to 

describe the kinetics of water loss and solute gain 

in OD processes. This model considers the initial 

rate of mass transfer and the equilibrium state, 

providing a good fit for experimental data. In 

search for more accurate descriptive models, 

artificial intelligent (AI) models have shown 

potentials to precisely represent scientific 

findings (Okonkwo et al., 2022). Commonly 

utilized AI models are Artificial Neural 

Networks (ANN), Fuzzy Logic (FL), Support 

Vector Machine (SVM), Adaptive Neuro Fuzzy 

inference System (ANFIS), Genetic Algorithm 

(GA) and multi gene genetic programming 

(MGGP), amongst others (Adeyi et al., 2023).  

A number of studies had been conducted on OD 

investigation and modelling of agro-forestry 

produces. For instance, Khanom et al., (2014) 

investigated the influence of concentration of 

sugar on mass transfer of pineapple slices during 

OD process and found out that there were rapid 

rates of water loss, sugar gain, and weight 

reduction. Deshmukh et al., (2021) studied OD 

of carrot strips with modelling effort; Azuara’s 

and Peleg models were found to be best for 

representing moisture loss while Power law and 

Magee’s model were found to be best fit for solid  

gain. The present author found that not much 

work had been done on the OD processing of 

Murasaki-29 and there is sparing report on 

modelling of Performance ratio of an OD 

process with Adaptive Neuro Fuzzy Inference 

System (ANFIS) AI method. Therefore, filling 

these gaps formed the focus of the present study. 

Materials and Methods 

The effect of OD process factors on the OD 

characteristics of Murasaki-29 Sweet Potato 

(MSP) tubers was determined experimentally. 

Fresh MSP tubers were sourced from a local 

market (Waso Market) in Ogbomoso, Oyo State, 

Nigeria. An Agricultural Extension Officer 

assisted in the identification of MSP amongst 

other varieties in the market. The MSP tubers 

were harvested 8 h prior to its purchase as 

informed by the seller. Thereafter, the purchased 

MSP tubers were taking to the laboratory for 

experimentation using a polythene bag.  

In the laboratory, the MSP tubers were washed 

with drinkable water to remove dirt and air dried 

in the laboratory atmosphere at room 

temperature (28 – 30 OC).The tubers were 

manually peeled and tuber pulp was cut into 

cubes with dimensions of 3 x 3 x 3 cm³. The 

initial moisture content of the MSP was 69.13% 
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w.bas determined by following the specifications 

of the Association of Official Analytical 

Chemists method (AOAC, 2005) using 

convective oven (SG-90526 - model, Stangas - 

company, Italy - country), at 105 OC for 24 h 

(Oranusi et al., 2014).  

In the experimentation, the effect of sugar 

concentration (40, 50 and 60%) in the osmotic 

solution, MSP pulp resident time (0 - 120 min, at 

5 min interval) and temperature (30, 50 and 60 

OC) were investigated in accordance with the 

work of Sutar and Prasad (2011). This resulted 

into fifty – four (54) experimental runs. Pre-

weighed MSP cube samples were placed in a 500 

ml capped glass bottles along with the osmotic 

solution (300 ml) for specific experimental 

conditions. 

The mass exchange between the solution and the 

sample during OD process was assessed through 

Performance ratio (Pr) indicator as represented 

in Eqn. (1) – (3): 

Pr = 
SG

ML
     (1) 

ML  =
MiXi−MfXf

Mi
 X 100(%)   (2) 

SG = 
Mf(1−Xf)−Mi(1−Xi)

Mi
X 100(%) 

     (3) 

Where: ML is the moisture loss 

SG is the solute gain 

Mi is the sample’s initial weight, 

Xi is the sample’s moisture content 

Mf is the sample’s final weight after dehydration 

Xf is the sample’s final moisture content after 

dehydration 

Theory of ANFIS 

ANFIS is a specialized Sugeno fuzzy inference 

system that integrates the capabilities of 

Artificial Neural Networks (ANN) and Fuzzy 

Logic (FL) to effectively model intricate 

relationships between input and output data 

(Ojediran et al., 2021). The FL aspect of ANFIS 

handles the conversion of input data into 

membership functions. These functions are 

associated with specific rules, which are then 

related to the characteristics of the output data. 

Finally, these output characteristics are 

transformed into output membership functions, 

resulting in the final output 

The shape and characteristics of the membership 

functions can be adjusted to enhance the system's 

accuracy (Okonkwo et al., 2022). This 

adjustment is facilitated by the ANN component 

of ANFIS, which automatically fine-tunes the 

parameters of the FL membership functions to 

optimize performance. Typically, this tuning 

process employs algorithms like back-

propagation or least squares approximation 

methods. 

During the training phase, the system learns and formulates rules based on the input data to achieve 

precise approximations. Figure 1 illustrates the structure of a generalized ANFIS model featuring two 

input factors, labeled ‘a’ and ‘b’. 
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Figure 1 ANFIS Illustration (Adeyi et al. 2022)  

 

Referring to the illustrated figure, the rules of a 

typical ANFIS structure are expressed in 

Equations (4) to (7) as follows: 

Rule 1: If a is C1 and b is D1, then f1 = p1a + q1b 

+ r1         (4) 

Rule 2: If a is C2 and b is D2, then f2 = p2a + q2b 

+ r2          (5) 

Rule 3: If a is C3 and b is D3, then f3 = p3a + q3b 

+ r3           (6) 

Rule 4: If a is C4 and b is D4, then f4 = p4a + q4b 

+ r4            (7) 

The input layer consists of two inputs, ‘a’ and 

‘b’. Layer 1, denoted by Equation (8), contains 

the crisp inputs for the system being analyzed, 

where O1represents the layer and 𝑖 indicates the 

ANFIS node. 

O𝑖
1= (input factors)           (8) 

 

In Layer 2, the provided crisp input data are 

transformed into a fuzzy space using designated 

membership functions (mf). This transformation 

process is known as fuzzification, which is why 

this layer is called the fuzzification layer. This 

layer comprises adaptive nodes, as represented 

by Equations (9) and (10), 𝜇Ai and 𝜇Bi depicts 

the input membership functions. 

 

O𝑖
2=  𝜇Ai (input factor 1) for 𝑖 = 1, 2        (9) 

O𝑖
2=  𝜇Bi (input factors 2) for 𝑖 = 3, 4      (10) 

Layer 3 is known as the firing strength layer of 

the structure. In this layer, the product of the 

degrees to which the input factors align with the 

chosen membership functions is calculated, as 

shown in Equation (11). 

O𝑖
3= 𝑤𝑖 =𝜇Ai (input factor 1) × 𝜇Bi (input factor 

2), …=1,2,3,4    (11) 

Layer 4 is the normalization layer, where the 

relative firing strength of each rule is calculated 

by comparing it to the total firing strengths of all 

the rules. This layer consists of fixed nodes, as 

represented in Equation (12). 

O𝑖
4   = w’= 𝑤𝑖/𝑤1 + 𝑤2,   = 1, 2         (12) 

Layer 5 is the defuzzification layer, represented 

by Equation (13). This layer contains the 

consequent parameters of the fuzzy rules, with 

its neurons closely connected to the 

normalization neurons. 
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O𝑖
5= 𝑤𝑖′𝑓𝑖 = 𝑤′(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖), 𝑖 = 1, 2       (13) 

Layer 6 provides the overall output for each 

input within the fuzzy space, calculated as the 

sum of the outputs from Layer 5. This is 

expressed in Equation (14). 

O𝑖
6= overall output = ∑𝑖𝑤’𝑖𝑓 = ∑𝑖𝑤𝑖𝑓𝑖/  ∑ = 1, 2            

     (14) 

The type and number of membership functions 

are crucial parameters that influence the 

performance of an ANFIS structure in modeling 

tasks. This study examined the optimal selection 

of these parameters by evaluating the impact of 

different membership function types (trimf, 

pimf, and gaussmf) and membership function 

numbers (2 and 3 mfs) on the accuracy of the 

ANFIS model for predicting and modeling the 

OD characteristics of MSP. The input factors 

considered include time (min), temperature (°C), 

and sugar concentration (%). The experimental 

data were divided into training (70%), checking 

(15%), and testing (15%) sets, following the 

methodology outlined by Okonkwo et al. (2022). 

The ANFIS model for predicting the OD 

characteristics was developed using MATLAB 

R2021 software. 

 

Modelling Efficiency   

The performance of the ANFIS model structures 

was evaluated using statistical metrics such as 

the correlation coefficient (R) and root mean 

square error (RMSE). A model is considered 

more accurate when it achieves a lower RMSE 

and a higher Rvalue, typically ranging from 0 to 

1 (Adewale et al., 2015). The mathematical 

expressions for these indicators are provided in 

Equations (15) and (16) (Adeyi et al., 2018). 

 

R = 
[∑ (𝑄𝑖−𝑄𝑚)(𝑃𝑖−𝑃𝑚)𝑁

𝑖=1 ]
2

∑ (𝑄𝑖−𝑄𝑚)2𝑁
𝑖=1  + (𝑄𝑖−𝑄𝑚)2       (15) 

 

RMSE =√
∑ (𝑄𝑖−𝑃𝑖)2𝑛

𝑖=1

𝑁
         (16) 

 

Where: 𝑄𝑖 is the observed and 𝑃𝑖 is the predicted 

value. 𝑄𝑚 and 𝑃𝑚 represents the average values 

of the observed and predicted values. 𝑁 

represented the number of observations. 
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Results and Discussion 

Effect of Temperature and Time on the Performance Ratio 

The effect of temperature and time on the OD performance ratio (Pr) of MSP is represented in Fig. 1 

(a) – (c).  

     

                                     (a)        (b) 

 

(c) 

Figure 1: Effect of process condition on performance evaluation 

 

Figures 1 (a) - (c) shows that the Performance 

ratio (Pr) in all observations, increased 

significantly between 0 - 20 min, until the peak 

was reached and sharp decrease in Pr noticed 

thereafter. The initial and most substantial 

increase in Pr during the first 20 minutes is 

attributed to the maximum potential difference 

that existed between MSP samples and the OD 

or hypertonic solution utilized, due to maximum 

moisture availability in the MSP samples and the 

maximum sugar availability in the OD or 

hypertonic solution (Mari et al., 2024). This 

potential difference, which is typically greatest 

at the start of the process, leads to the highest 
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mass transfer rate in terms of moisture loss from 

the sample and sugar intake into the sample. The 

potential difference is expected to reduce as the 

MSP samples reach saturation (that is, maximum 

moisture loss and maximum sugar gain). In 

addition, Pr decreased with increased 

temperature in all observations (Figure 1 (a) – 

(c)). This may be due to possible alterations in 

the microstructure of the MSP samples, 

potentially causing cell collapse that impedes the 

transfer of moisture and sugar. Pr also increased 

with increase in sugar quantity across all the 

observations. This is attributed to higher sugar 

concentrations creating greater osmotic pressure 

difference between the food material and the 

osmotic solution, which serves as the driving 

force for water removal (Wang and Feng, 2023). 

These results are in conformity with the findings 

of Pessoa et al., (2020) in a study on OD of 

Cassava Cubes. 

ANFIS modelling  

The effect of ANFIS parameters (that is, membership function type and number) on the efficiency of 

ANFIS model prediction for the observed OD characteristics is depicted in Table 1. 

 

  Table 1: Effect of ANFIS parameter on model quality 

Mf Type Mf Number Epoch No. R 

trimf  2  100  0.9904 

trimf  3  100  0.9684 

pimf  2  100  0.8448 

pimf  3  100  0.9684 

gaussmf 2  100  0.9760 

gaussmf 3  100  0.9740 

Table 1 shows that the 2-trimf ANFIS parameter 

achieved the highest coefficient of determination 

(R = 0.9904), indicating its effectiveness in 

modelling the observed MSP tuber’s OD 

characteristics (Pr). The pimf membership 

function number (that is, 2 or 3) exhibited 

variable performances, with the least 

performance observed in Mf Number 2 (R = 

0.8448). The two instances of the gaussmf 

membership function type (that is, 2 and 3 

membership function number) displayed 

competitive performance metrics (that is, R = 

0.9760 and R = 0.9740, respectively), suggesting 

they are effective alternatives of each other for 

modelling the data. This result implied that the 

choice of ANFIS parameter (that is, membership 

function type and membership function number) 

significantly influenced the effectiveness of 

ANFIS model, as indicated by the correlation 

coefficient (R) (Okonkwo et al, 2022). 
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Therefore, it is important to select appropriate 

membership functions number and type, and 

conduct multiple evaluations to optimize model 

performance in Adaptive neuro fuzzy inference 

systems (ANFIS). The same observation was 

reported by Ojediran et al., (2021). 

The characteristics of the best performing ANFIS parameter (that is, 2-trimf) in this study is represented 

in Fig. 2 (a) – (e).   

    

(a)                 (b) 

  

 

 

 

 

 

 

      (c)          (d) 
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(e) 

 

 

 

 

 

Figure 2: Characteristics of the best performing ANFIS parameter (2-trimf) 

 

Figure 2 (a) shows the 2-trimf membership 

function parameter in an unrefined state while 

Figure 2 (b) shows its refined state after model 

establishment. This showed that ANFIS adjusted 

its parameters towards achieving best solution to 

the given problem. Usually, a membership 

function is a fundamental concept in fuzzy logic 

and fuzzy set theory that quantifies the degree to 

which a particular element belongs to a fuzzy set. 

Unlike traditional binary sets, where an element 

either belongs or does not belong to a set (0 or 

1), fuzzy sets allow for varying degrees of 

membership ranging from 0 to 1 (Okonkwo et 

al., 2022).  

The training performance of the best performing 

membership function as represented in Figure 2 

(c) showed that ANFIS 2-trimf parameter had a 

fluctuating error curve. A decreased error profile 

or trend showed desirable data pattern learning 

while an increased error profile or trend showed 

undesirable data overfitting or memorization 

(Ojediran et al., 2022). In this case, ANFIS was 

able to overcome the memorization tendencies 

and settled into a comfortable learnt data pattern 

position at 95 epochs. The extended epoch 

number (that is, 95 out of 100) showed the 

complexity in the modelled data. Generally in 

computational analysis, quick convergence of 

solution is desirable to minimize computer 

memory utilization (Adeyi et al., 2020), and thus 

faster result output leading to preservation of 

computing resources.   

The scatter plot in Figure 2 (d) compares the 

experimental data with the ANFIS predictions 

(Amoo-Onidundu et al., 2024). A close 

alignment of these points indicated that the 

ANFIS model effectively captures the 

underlying relationships in the data and provides 

accurate predictions (Oke et al., 2017). The 

distribution of the points can help identify trends, 

patterns, or discrepancies between the predicted 

and actual performance. When green circles 

closely follow the trend of the blue crosses, it 

suggested that the ANFIS model performs well 
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in predicting outcomes based on the available 

data. If there are significant deviations between 

the predicted and actual values (for instance, 

green circles that are far from corresponding 

blue crosses), it indicated limitations in the 

ANFIS model's ability to accurately predict with 

efficiency based on the input parameters (Adeyi 

et al., 2022).  

In Figure 2 (e), the fitted line represented the 

regression line that summarizes the relationship 

between the target values and the predicted 

outputs. The equation of the fitted line is 

presented as Output = 0.95 * Target + 0.0072, 

indicating that the model predictions are 

approximately 95% of the target values, with a 

slight positive offset (that is, 0.0072). The 

regression coefficient (that is, R = 0.99045), 

indicate a high degree of correlation between the 

predicted and actual values. This implied that the 

model explains approximately 99% of the 

variance in the target variable, reflecting strong 

predictive capability. The proximity of the data 

points to the fitted regression line indicates how 

closely the model predictions align with the 

actual observations. These results are useful for 

process design and control (Adeyi et al., 2022).  

Conclusion 

This study investigated the effects of varying 

temperatures, time, and sugar concentration on 

the osmotic dehydration (OD) characteristics of 

Murasaki-29 sweet potatoes, using the 

performance ratio (Pr) as indicator. The results 

revealed that while sugar concentration 

increment increased Pr, higher temperatures 

negatively affect the Pr, possibly due to possible 

changes in the tuber's microstructure. The 

ANFIS modeling approach was highly effective, 

with the 2-trimf membership function achieving 

the highest correlation coefficient (R = 0.9904), 

suggesting its effectiveness in modeling and 

predicting the OD processes. The successful 

application of ANFIS in this study highlighted 

its potentials for use in decision-making and 

designing process controllers for industrial-scale 

food processing operations.  
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